CONTAMINATION AND HABITAT FRAGMENTATION AS DRIVERS OF POPULATION DISTRIBUTION OF STRESSED LANDSCAPES

David Salvatierra¹, Marcos Krull², María Pilar González¹, María Úbeda-Manzanaro¹, Mohammed

Ariful Islam^{1,3}, Cristiano V.M. Araújo¹, and Julián Blasco¹

ICMAN

SENCKENBERG world of biodiversity

1 Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN – CSIC), Spain 2 Department of Enthomology, Senckenberg Research Institute, Frankfurt am Main, Germany 3 Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh

INTRODUCTION

In aquatic ecosystems, the spatial connectivity is considered a fundamental ecosystem organizing principle. Disturbances in the landscape might affect the biological dispersal, as a consequence of the habitat fragmentation driven by connectivity loss and chemical fragmentation caused by contamination.

OBJECTIVES

To evaluate the individual and combined effects of habitat connectivity restriction and contamination on the organism's ability to explore a heterogeneous landscape, and the possible threat to the population dynamics to forage.

The capacity to explore a landscape was evaluated by foraging as one of the most important trigger for organisms exploring an environment.

MATERIALS AND METHODS

Exposure assay system

Length: 24 cm Width: 24 cm Height: 8 cm Volume: 700 mL

Rotatory door Gate Length: 5 cm Height: 6.5 cm Diameter: 3.5 cm Width: 5 cm Diameter hole: 2.1 cm Height: 8 cm

Diameter: 2.45 cm

Length: 22.2 cm

HeMHAS - Heterogeneous Multi-Habitat

Assay System (version #2)

Multi-stressor approach

Heterogeneous connectivity configuration and contamination exposure

Contamination

Connectivity restriction

Zebrafish (Danio rerio)

High fragmentation

> Fragmentation levels defined by the passages connecting compartments Contaminated compartments are colored in red

RESULTS

Fragmentation

According to model selection, the evidence ratios (ER) that support the effects of both stressors, high level of contamination (25 µg L-1) and high restriction connectivity, were (respectively):

ER = 111.8 and >1000

CONCLUSIONS

This study evidenced that the effects of a highly restricted connectivity among habitats and contamination by copper:

- Reduced the foraging success of the zebrafish to reach food,
- Increased the foraging effort, and
- Increased the time spent by the fish exploring the landscape.

ACKNOWLEDGMENTS

BrEStress project